martes, 3 de noviembre de 2009

SISTEMA DIGESTIVO












El aparato digestivo es el conjunto de órganos (boca, faringe, esófago, estómago, intestino delgado e intestino grueso) encargados del proceso de la digestión, es decir, la transformación de los alimentos para que puedan ser absorbidos y utilizados por las células del organismo.
La función que realiza es la de transporte (alimentos), secreción (jugos digestivos), absorción (nutrientes) y excreción (mediante el proceso de defecación).
El proceso de la digestión es el mismo en todos los animales monogástricos: transformar los glúcidos, lípidos y proteínas en unidades más sencillas, gracias a las enzimas digestivas, para que puedan ser absorbidas y transportadas por la sangre

Aparato digestivo
Descripción y funciones
El aparato digestivo es un largo tubo, con importantes glándulas asociadas, siendo su función la transformación de las complejas moléculas de los alimentos en sustancias simples y fácilmente utilizables por el organismo.
Desde la boca hasta el ano, el tubo digestivo mide unos once metros de longitud. En la boca ya empieza propiamente la digestión. Los dientes trituran los alimentos y las secreciones de las glándulas salivales los humedecen e inician su descomposición química. Luego, el bolo alimenticio cruza la faringe, sigue por el esófago y llega al estómago, una bolsa muscular de litro y medio de capacidad, en condiciones normales, cuya mucosa segrega el potente jugo gástrico, en el estómago, el alimento es agitado hasta convertirse en una papilla llamada quimo.
A la salida del estómago, el tubo digestivo se prolonga con el intestino delgado, de unos cinco metros de largo, aunque muy replegado sobre sí mismo. En su primera porción o duodeno recibe secreciones de las glándulas intestinales, la bilis y los jugos del páncreas. Todas estas secreciones contienen una gran cantidad de enzimas que degradan los alimentos y los transforman en sustancias solubles simples.
El tubo digestivo continúa por el intestino grueso, de algo más de metro y medio de longitud. Su porción final es el recto, que termina en el ano, por donde se evacuan al exterior los restos indigeribles de los alimentos.
Estructura del tubo digestivo
El tubo digestivo, es un órgano llamado también conducto alimentario o tracto gastrointestinal presenta una sistematización prototípica, comienza en la boca y se extiende hasta el ano. Su longitud en el hombre es de 10 a 12 metros, siendo seis o siete veces la longitud total del cuerpo. En su trayecto a lo largo del tronco del cuerpo, discurre por delante de la columna vertebral. Comienza en la cara, desciende luego por el cuello, atraviesa las tres grandes cavidades del cuerpo: torácica, abdominal y pélvica. En el cuello está en relación con el conducto respiratorio, en el tórax se sitúa en el mediastino posterior entre los dos pulmones y el corazón, y en el abdomen y pelvis se relaciona con los diferentes órganos del aparato genitourinario. El tubo digestivo procede embriológicamente del endodermo, al igual que el aparato respiratorio. El tubo digestivo y las glándulas anexas (glándulas salivales, hígado y páncreas), forman el aparato digestivo. Histológicamente está formado por cuatro capas concéntricas que son de adentro hacia afuera:
Capa interna o mucosa (donde pueden encontrarse glándulas secretoras de moco y HCl vasos linfáticos y algunos nódulos linfoides). Incluye una capa muscular interna o muscularis mucosae compuesta de una capa circular interna y una longitudinal externa de músculo liso.
Capa submucosa compuesta de tejido conectivo denso irregular fibroelástico. La capa submucosa contiene el llamado plexo submucoso de Meissner, que es un componente del sistema nervioso entérico y controla la motilidad de la mucosa y en menor grado la de la submucosa, y las actividades secretorias de las glándulas
Capa muscular externa compuesta, al igual que la muscularis mucosae, por una capa circular interna y otra longitudinal externa de músculo liso (excepto en el esófago, donde hay músculo estriado). Esta capa muscular tiene a su cargo los movimientos peristálticos que desplazan el contenido de la luz a lo largo del tubo digestivo. Entre sus dos capas se encuentra otro componente del sistema nervioso entérico, el plexo mientérico de Auerbach, que regula la actividad de esta capa.
Capa serosa o adventicia. Se denomina según la región del tubo digestivo que reviste, como serosa si es intraperitoneal o adventicia si es retroperitoneal. La adventicia está conformada por un tejido conectivo laxo. La serosa aparece cuando el tubo digestivo ingresa al abdomen, y la adventicia pasa a ser reemplazada por el peritoneo.
Los plexos submucoso y mientérico constituyen el sistema nervioso entérico que se distribuye a lo largo de todo el tubo digestivo, desde el esófago hasta el ano. Por debajo del diafragma, existe una cuarta capa llamada serosa, formada por el peritoneo. El bolo alimenticio pasa a través del tubo digestivo y se desplaza así, con ayuda tanto de secreciones como de movimiento peristáltico que es la elongación o estiramiento de las fibras longitudinales y el movimiento para afuera y hacia adentro de las fibras circulares. A través de éstos el bolo alimenticio puede llegar a la válvula cardial que conecta directamente con el estómago. Si el nivel de corte es favorable, se puede ver los mesos. El peritoneo puede presentar subserosa desarrollada, en especial en la zona del intestino grueso, donde aparecen los apéndices epiploicos. Según el sector del tubo digestivo, la capa muscular de la mucosa puede tener sólo músculo longitudinal o longitudinal y circular. La mucosa puede presentar criptas y vellosidades, la submucosa puede presentar pliegues permanentes o pliegues funcionales. El pliegue funcional de la submucosa es posible de estirar, no así la válvula connivente. El grosor de la pared cambia según el lugar anatómico, al igual que la superficie, que puede ser lisa o no. El epitelio que puede presentarse es un plano pluriestratificado no cornificado o un prismático simple con microvellosidades. En las criptas de la mucosa desembocan glándulas. Éstas pueden ser de la mucosa o de la submucosa. En tanto, una vellosidad es el solevantamiento permanente de la mucosa. Si el pliegue es acompañado por la submucosa, entonces el pliegue es de la submucosa. El pliegue de la mucosa y submucosa es llamado válvula connivente o pliegue de Kerckring. La válvula connivente puede mantener la presencia de vellosidades. La válvula connivente es perpendicular al tubo digestivo, y solo se presenta en el intestino delgado.

Descripción anatómica

Esófago

El esófago es un conducto o músculo membranoso que se extiende desde la faringe hasta el estómago. De los incisivos al cardias (porción donde el esófago se continua con el estómago) hay unos 40 cm. El esófago empieza en el cuello, atraviesa todo el tórax y pasa al abdomen a través del orificio esofágico del diafragma. Habitualmente es una cavidad virtual. (es decir que sus paredes se encuentran unidas y solo se abren cuando pasa el bolo alimenticio). El esófago alcanza a medir 25 cm y tiene una estructura formada por dos capas de músculos, que permiten la contracción y relajación en sentido descendente del esófago. Estas ondas reciben el nombre de movimientos peristálticos y son las que provocan el avance del alimento hacia el estómago.

Estómago

El estómago es un órgano en el que se acumula comida.Varia de forma según el estado de repleción (cantidad de contenido alimenticio presente en la cavidad gástrica) en que se halla, habitualmente tiene forma de J. Consta de varias partes que son : fundus, cuerpo, antro y píloro. Su borde menos extenso se denomina curvatura menor y la otra, curvatura mayor. El cardias es el límite entre el esófago y el estómago y el píloro es el límite entre estómago y el intestino delgado . En un individuo mide aproximadamente 25cm del cardias al píloro y el diámetro transverso es de 12cm. Es el encargado de hacer la transformación química ya que los jugos gástricos transforman el bolo alimenticio que anteriormente había sido transformado mecánicamente (desde la boca). En su interior encontramos principalmente dos tipos de células, las células parietales, las cuales secretan el ácido clorhídrico (HCL) y el factor intrínseco, una glucoproteina utilizada en la absorción de vitamina B12 en el intestino delgado; además contiene las células principales u Oxínticas las cuales secretan pepsinógeno, precursor enzimático que se activa con el HCL formando 3 pepsinas cada uno. La secreción de jugo gástrico está regulada tanto por el sistema nervioso como el sistema endocrino, proceso en el que actúan: la gastrina, la colecistoquinina (CCK), la secretina y el péptido inhibidor gástrico (PIG).
En el Estomago se realiza la digestión de:
Proteínas (principalmente pepsina).
Lípidos
NO ocurre la digestión de Carbohidratos.
Otras funciones del estomago son la eliminación de la flora bacteriana que viene con los alimentos por acción del ácido clorhídrico.

Intestino delgado

El intestino delgado se inicia en el duodeno (tras el píloro) y termina en la válvula ileocecal, por la que se une a la primera parte del intestino grueso. Su longitud es variable y su calibre disminuye progresivamente desde su origen hasta la válvula ileocecal y mide de 6 a 7 metros de longitud. El duodeno, que forma parte del intestino delgado, mide unos 25 - 30 cm de longitud; el intestino delgado consta de una parte próxima o yeyuno y una distal o íleon; el límite entre las dos porciones no es muy aparente. El duodeno se une al yeyuno después de los 30cm a partir del píloro. El yeyuno-ìleon es una parte del intestino delgado que se caracteriza por presentar unos extremos relativamente fijos: El primero que se origina en el duodeno y el segundo se limita con la válvula ileocecal y primera porción del ciego. Su calibre disminuye lenta pero progresivamente en dirección al intestino grueso. El límite entre el yeyuno y el íleon no es apreciable. El intestino delgado presenta numerosas vellosidades intestinales que aumentan la superficie de absorción intestinal de los nutrientes y de las proteínas. Al intestino delgado, principalmente al duodeno, se vierten una diversidad de secreciones, como la bilis y el jugo pancreático.
En el intestino delgado, principalmente en el duodeno se realiza la digestión de proteínas, lípidos, ácidos nucleicos, y carbohidratos.

Intestino grueso

El intestino grueso se inicia a partir de la válvula ileocecal en un fondo de saco denominado ciego de donde sale el apéndice vermiforme y termina en el recto. Desde el ciego al recto describe una serie de curvas, formando un marco en cuyo centro están las asas del yeyuno íleon. Su longitud es variable, entre 120 y 160 cm, y su calibre disminuye progresivamente, siendo la porción más estrecha la región donde se une con el recto o unión rectosigmoidea donde su diámetro no suele sobrepasar los 3 cm, mientras que el ciego es de 6 o 7 cm. Tras el ciego, la del intestino grueso es denominada como colon ascendente con una longitud de 15cm, para dar origen a la tercera porción que es el colon transverso con una longitud media de 50cm, originándose una cuarta porción que es el colon descendente con 10cm de longitud. Por último se diferencia el colon sigmoideo, recto y ano. El recto es la parte terminal del tubo

Páncreas

Es una glándula íntimamente relacionada con el duodeno, es de origen mixto, segrega hormonas a la sangre para controlar los azúcares y jugo pancreatico que se vierte al intestino a través del conducto pancreático, e interviene y facilita la digestión , sus secreciones son de gran importancia en la digestión de los alimentos.

Hígado


El hígado es la mayor víscera del cuerpo. Pesa 1500 gramos. Consta de dos lóbulos. Las vías biliares son las vías excretoras del hígado, por ellas la bilis es conducida al duodeno. normalmente salen dos conductos: derecho e izquierdo, que confluyen entre sí formando un conducto único. El conducto hepático, recibe un conducto más fino, el conducto cístico, que proviene de la vesícula biliar alojada en la cara visceral de hígado. De la reunión de los conductos cístico y el hepático se forma el colédoco, que desciende al duodeno, en la que desemboca junto con el conducto excretor del páncreas. La vesícula biliar es un reservorio musculo membranoso puesto en derivación sobre las vías biliares principales. Contiene unos 50-60 cm³ de bilis. Es de forma ovalada o ligeramente piriforme y su diámetro mayor es de unos 8 a 10 cm.

Bazo
El bazo, por sus principales funciones se debería considerar un órgano del sistema circulatorio, pero por su gran capacidad de absorción de nutrientes por via sanguínea, se le puede sumar a los aparatos anexos del aparato digestivo . Su tamaño depende de la cantidad de sangre que contenga.


SISTEMA NERVIOSO.



El sistema nerviosos periférico es una red ramificada de nervios. Sus fibras son de dos tipos: fibras aferentes para la transmisión de información sensitiva hacia la médula espinal y el cerebro, y fibras eferentes para transmitir las señales motoras desde el sistema nervioso central hacia la periferia, en especial los músculos estriados. Algunos de los nervios periféricos tienen un origen directo en la región basal del propio cerebro e inervan principalmente la cabeza; en conjunto se llaman nervios craneales. El resto de los nervios periféricos son los nervios raquídeos, de los cuales cada uno sale a un lado de la médula espinal a través de un agujero intervertebral en cada vértebra de la médula

ANATOMÍA PRINCIPAL DEL SISTEMA NERVIOSO.
POTENCIAL DE ACCIÓN O IMPULSO NERVIOSO.

Cuando se transmite una señal sobre una fibra nerviosa, el potencial de membrana pasa por una serie de cambios llamados potencial de acción.
El impulso (o potencial de acción ) se extiende a todo lo largo de la fibra nerviosa, y por medio de estos impulsos la fibra nerviosa transmite la información desde una parte del cuerpo hacia otra.

NEURONAS, CÉLULAS DEL SISTEMA NERVIOSO CENTRAL.

De una neurona característica del cerebro o de la médula espinal, sus partes principales son:
Cuerpo celular. A partir de éste crecen las otras partes de la neurona. Además, el cuerpo celular brinda gran parte de la nutrición que se requiere para conservar la vida de toda la neurona.
Dendritas. Estas son muchas ramificaciones del cuerpo celular. La mayor parte de las señales que va a transmitir entran por las dendritas. Las dendritas de cada neurona suelen recibir señales de miles de puntos de contacto con otras neuronas, que se llaman sinapsis.
Axón. Esta es la parte de la neurona llamada fibra nerviosa. Los axones transmiten las señales nerviosas hacia la siguiente célula nerviosa en el cerbro o la médula espinal, o hacia los músculos y las glándulas en las partes más periféricas del cuerpo.
Terminaciones axonianas y sinapsis. Al final de cada una de estas ramas se encuentra una terminal axoniana especializada, que en el sistema nervioso central se llama botón sináptico por su aspecto. Este punto de contacto entre el botón y la membrana se llama sinapsis.
Cuando se estimula el botón sináptico, libera una cantidad minúscula de una hormona llamada sustancia transmisora hacia el espacio entre el botón y la membrana de la neurona, y a continuación la sustancia transmisora también estimula a la neurona.

CÉLULA DE SCHWANN Y VAINA DE MIELINA.

En el centro de esta fibra se encuentra el axón, que transmite el impulso nervioso. Alrededor del axón se encuentra la vaina de Schwann (que también es la vaina de mielina). Depositan esta vaina las células de Schwann que se encuentran a todo lo largo de los nervios periféricos, y brinda el aislamiento eléctrico a los axones.

La célula de Schwann forma la vaina de mielina uniendo primero se membrana con la del axón, y a continuación envolviéndola una y otra vez alrededor del mismo.

Como esta membrana contiene grandes cantidades de la sustancia grasa mielina, la membrana aislante alrededor del axón se llama “vaina de mielina”. La mielina brinda un aislamiento eléctrico excelente al axón.

NÓDULO DE RANVIER.

Más allá de la primera célula de Schwann se envuelve una segunda alrededor del axón. La unión entre las dos células de Schwann se llama nódulo de Ranvier. Hay un espacio delgado de líquido extracelular entre las dos células de Schwann en este nodo, y por estos espacios pueden fluir cantidades pequeñas de iones. Por ello, el nódulo de Ranvier es muy importante, para la transmisión de los impulsos nerviosos por las fibras nerviosas mielínicas.

EFECTOS DE LA VAINA DE MIELINA SOBRE LA TRANSMISIÓN DEL IMPULSO NERVIOSO: CONDUCCIÓN SALTATORIA.

Los impulsos se transmiten a lo largo del nervio mielínico por un proceso llamado conducción saltatoria, que despolariza el primer nodo de Ranvier. Esto hace que se dirija la corriente eléctrica hasta el siguiente nodo de Ranvier. El impulso “salta” de un nodo a otro, lo que constituye el proceso llamada conducción saltatoria.
La conducción saltatoria es valiosa por dos razones:
1.- Se incrementa la velocidad de conducción sobre la fibra muchas veces.
2.- La vaina de mielina disminuye en gran medida la cantidad de energía que requiere el nervio para la transmisión del impulso.

TEJIDO NERVIOSO.

El tejido nervioso de cerebro, médula espinal o nervios periféricos contiene dos tipos básicos de células:
Neuronas, que conducen las señales en el sistema nervioso, y de las cuales hay aproximadamente 100.000 millones en todo el sistema.
Células de sostén y aislamiento, que sostienen a las neuronas en su sitio e impiden que se extiendan las señales entre estas células y sus estructuras intercelulares, que de manera colectiva se llaman neuroglia. En el sistema nervioso periférico las células con esta función se llaman células de Schwann.

TIPOS DE ESTÍMULOS QUE PUEDEN EXCITAR A LA FIBRA NERVIOSA.

En el organismo, las fibras nerviosas se estimulan normalmente por medios físicos y químicos. Por ejemplo, la presión sobre ciertas terminaciones nerviosas de la piel, estira de manera mecánica estas terminaciones.
El calor y el frío, la lesión de los tejidos, como el corte de la piel y el estiramiento tisular excesivo, pueden generar impulsos dolorosos.
En el sistema nervioso central los impulsos se transmiten desde una neurona hacia otra principalmente por medios químicos. La terminación nerviosa de la primera neurona secreta una sustancia química llamada transmisor, que a su vez excita a la segunda neurona.



TRANSMISIÓN DE SEÑALES EN LOS NERIVOS PERIFÉRICOS.



Las grandes fibras mielínicas transmiten señales nerviosas con rapidez extrema. Estas señales regulan la actividad muscular rápida, o transmiten señales sensitivas muy críticas al cerebro. Por otra parte, las fibras amielínicas controlan estructuras como los vasos sanguíneos, y también transmiten gran cantidad de información sensitiva no crítica hacia el cerebro, como señales de tacto tosco desde todas las regiones de la piel, señales de presión desde la superficie del cuerpo, o señales de dolor de tipo continuo desde cualquier sitio del organismo.


SISTEMA MUSCULAR






En anatomía humana, el sistema muscular es el conjunto de los más de 600 músculos del cuerpo, cuya función primordial es generar movimiento, ya sea voluntario o involuntario -músculos esqueléticos y viscerales, respectivamente. Algunos de los músculos pueden enhebrarse de ambas formas, por lo que se los suele categorizar como mixtos.
El sistema muscular permite que el esqueleto se mueva, mantenga su estabilidad y la forma del cuerpo. En los vertebrados se controla a través del sistema nervioso, aunque algunos músculos (tales como el cardíaco) pueden funcionar en forma autónoma. Aproximadamente el 40% del cuerpo humano está formado por músculos, vale decir que por cada kg de peso total, 400 g corresponden a tejido muscular.







Funciones del sistema muscular


El sistema muscular es responsable de:


Locomoción: efectuar el desplazamiento de la sangre y el movimiento de las extremidades.
Actividad motora de los órganos internos: el sistema muscular es el encargado de hacer que todos nuestros órganos desempeñen sus funciones, ayudando a otros sistemas como por ejemplo al sistema cardiovascular.


Información del estado fisiológico: por ejemplo, un cólico renal provoca contracciones fuertes del músculo liso generando un fuerte dolor, signo del propio cólico.
Mímica: el conjunto de las acciones faciales, también conocidas como gestos, que sirven para expresar lo que sentimos y percibimos.


Estabilidad: los músculos conjuntamente con los huesos permiten al cuerpo mantenerse estable, mientras permanece en estado de actividad.


Postura: el control de las posiciones que realiza el cuerpo en estado de reposo.
Producción de calor: al producir contracciones musculares se origina energía calórica.
Forma: los músculos y tendones dan el aspecto típico del cuerpo.
Protección: el sistema muscular sirve como protección para el buen funcionamiento del sistema digestivo como para los órganos vitales.


MUSCULOS


La principal función de los músculos es contraerse, para poder generar movimiento y realizar funciones vitales. Se distinguen tres grupos de músculos, según su disposición:
El músculo esquelético
El músculo liso
El músculo cardíaco
Dependiendo de la forma en que sean controlados:
Voluntarios: controlados por el individuo
Involuntarios o viscerales: dirigidos por el sistema nervioso central
Autónomo: su función es contraerse regularmente sin detenerse.
Mixtos: músculos controlados por el individuo y por sistema nervioso, por ejemplo los párpados.
Los músculos están formados por una proteína llamada miosina, la misma se encuentra en todo el reino animal e incluso en algunos vegetales que poseen la capacidad de moverse. El tejido muscular se compone de una serie de fibras agrupadas en haces o masas primarias y envueltas por la aponeurosis una especie de vaina o membrana protectora, que impide el desplazamiento del músculo. Las fibras musculares poseen abundantes filamentos intraprotoplasmáticos, llamados miofibrillas, que se ubican paralelamente a lo largo del eje mayor de la célula y ocupan casi toda la masa celular. Las miofibrillas de las fibras musculares lisas son aparentemente homogéneas, pero las del músculo estriado presentan zonas de distinta refringencia, lo que se debe a la distribución de los componentes principales de las miofibrillas, las proteínas de miosina y actina.


La forma de los músculos


Cada músculo posee una determinada estructura, según la función que realicen, entre ellas encontramos: Fusiformes músculos con forma de hueso. Siendo gruesos en su parte central y delgados en los extremos. Planos y anchos, son los que se encuentran en el tórax (abdominales), y protegen los órganos vitales ubicados en la caja torácica. Abanicoides o abanico, los músculos pectorales o los temporales de la mandíbula. Circulares, músculos en forma de aro. Se encuentran en muchos órganos, para abrir y cerrar conductos. por ejemplo el píloro o el orificio anal. Orbiculares, músculos semejantes a los fusiformes, pero con un orificio en el centro, sirven para cerrar y abrir otros órganos. Por ejemplo los labios y los ojos.


Funcionamiento


Los músculos son asociados generalmente en las funciones obvias como el movimiento, pero en realidad son también los que nos permiten impulsar la comida por el sistema digestivo, respirar y hacer circular a la sangre .
El funcionamiento sistema muscular se puede dividir en 3 procesos, uno voluntario a cargo de los músculos esqueléticos el otro involuntario realizado por los músculos viscerales y el último proceso deber de los músculos cardíacos y de funcionamiento autónomo.
Los músculos esqueléticos permiten caminar, correr, saltar, en fin facultan una multitud de actividades voluntarias. A excepción de los reflejos que son las repuestas involuntarias generadas como resultado de un estimulo. En cuanto a los músculos de funcionamiento involuntario, se puede especificar que se desempeñan de manera independiente a nuestra voluntad pero son supervisados y controlados por el sistema nervioso, se encarga de generar presión para el traslado de fluidos y el transporte de sustancias a lo largo del organismo con ayuda de los movimientos peristálticos (como el alimento, durante el proceso de digestión y excreción). El proceso autónomo se lleva a cabo en el corazón, órgano hecho con músculos cardíacos. La función primordial de este tejido muscular es contraerse regularmente, millones de veces, debiendo soportar la fatiga y el cansancio, o sino el corazón se detendría.


Cuidado del sistema muscular


Para mantener al sistema muscular en óptimas condiciones, se debe tener presente una dieta equilibrada, con dosis justas de glucosa que es la principal fuente energética de nuestros músculos. Evitar el exceso en el consumo de grasas, ya que no se metabolizan completamente, produciendo sobrepeso. Para rutinas de ejercicios físicos prolongados, necesitan una dieta rica en azúcares y vitaminas.
Además de una alimentación saludable se recomienda el ejercicio físico, el ejercicio muscular produce que los músculos trabajen, desarrollándose aumentando su fuerza y volumen, adquiriendo elasticidad y contractilidad, resistiendo mejor a la fatiga. También beneficia el desarrollo del esqueleto porque lo robustece, fortalece y modela, debido a la tracción que los músculos ejercen sobre los huesos, si los ejercicios son correctamente practicados, perfeccionan la armonía de las líneas y curvas. El ejercicio ayuda al desempeño de los órganos. Aumenta el volumen torácico, mejora la respiración y la circulación sanguínea, ampliando el tamaño de los pulmones y del corazón. Otro efecto del ejercicio físico, es que provoca un aumento considerable en el apetito, favoreciendo la digestión y la asimilación de los alimentos.


Enfermedades


Las enfermedades que afectan al sistema muscular pueden ser producidas por algunos virus que atacan directamente al músculo, también se experimentan dolencias por cansancio muscular, posturas inadecuadas, ejercicios bruscos o accidentes.
Algunas enfermedades y dolencias que afectan al sistema muscular son:
Desgarro: ruptura del tejido muscular.
Calambre: contracción espasmódica involuntaria, que afecta a los músculos superficiales.
Esguince: lesión producida por un daño moderado o total de las fibras musculares.
Distrofia muscular: degeneración de los músculos esqueléticos.
Atrofia: pérdida o disminución del tejido muscular.
Hipertrofia: crecimiento o desarrollo anormal de los músculos, produciendo en algunos casos serias deformaciones.
Poliomielitis: conocida comúnmente como polio. Es una enfermedad producida por un virus, que ataca al sistema nervioso central, y ocasiona que los impulsos nerviosos no se transmitan y las extremidades se atrofien.
Miastenia gravis: es un trastorno neuromuscular, se caracteriza por una debilidad del tejido muscular.


Los más importantes son :


En la Cabeza
Los que utilizamos para masticar, llamados Maceteros.El músculo que permite el movimiento de los labios cuando hablamos: Orbicular de los labios.Los que permiten abrir o cerrar los párpados : Orbiculares de los ojos. Los que utilizamos para soplar o silbar, llamados Bucinadores.


En el Cuello
Los que utilizamos para doblar la cabeza hacia los lados o para hacerla girar : se llaman Esterno - cleido - mastoideos.Los que utilizamos para moverla hacia atrás: Esplenio.


En El Tronco. (Visión Posterior).
Los utilizados en la respiración : Intercostales, Serratos, en forma de sierra, el diafragma que separa el tórax del abdomen. Los pectorales, para mover el brazo hacia adelante y los dorsales, que mueven el brazo hacia atrás. Los trapecios, que elevan el hombro y mantienen vertical la cabeza.


En Los Brazos
El Deltiodes que forma el hombro.El Biceps Braquial que flexiona el antebrazo sobre el brazo.El Tríceps Branquial que extiende el antebrazo.
Los pronadores y supinadores hacen girar la muñeca y la mano. (Antebrazo)
Los flexores y extensores de los dedos. Músculos de la Mano
En Las Extremidades Inferiores
Los glúteos que forman las nalgas.El sartorio que utilizamos para cruzar una pierna sobre la otra.El Bíceps crural está detrás, dobla la pierna por la rodilla.El tríceps está delante, extiende la pierna.
Los gemelos son los que utilizamos para caminar, forman la pantorrilla, terminan en el llamado tendón de Aquiles. Los flexores y extensores de los dedos. (músculos del pie)
Hay Dos Clases De Músculos

Los que hemos citado, cuya contracción puede ser rápida y Voluntaria : Se llaman músculos estriados o rojos.Los músculos intestinales de contracción lenta e involuntaria; son los llamados músculos lisos y blancos.
Los músculos realizan el trabajo de extensión y de flexión, para aquello tiran de los huesos, que hacen de palancas. Otro efecto de trabajo de los musculos es la producción de calor. Para ello regulan el funcionamiento de centros nerviosos.En ellos se reciben las sensaciones, para que el sistema nervioso elabore las respuestas conscientes a dichas sensaciones.
Los músculos gastan mucho oxigeno y glucosa, cuando el esfuerzo es muy fuerte y prolongado, provocando que los músculos no alcancen a satisfacer sus necesidades, dan como resultado los calambres y fatigas musculares por acumulación de toxinas musculares, estos estados desaparecen con descanso y masajes que activen la circulación, para que la sangre arrastre las toxinas presentes en la musculatura


SISTEMA RESPIRATORIO

El termino respiración, sirve para designar el proceso fisiológico, por el cual tomamos oxígeno del medio que nos rodea y eliminamos el dióxido de carbono de la sangre ( conocido como respiración externa ). Pero también sirve para designar el proceso de liberación de energía por parte de las células, procedente de la combustión de moléculas como los hidratos de carbono y las grasas ( respiración interna )
Se puede decir que la respiración externa es imprescindible para que tenga lugar la interna. Además necesitamos respirar continuamente ya que nuestras células necesitan el oxígeno y sin él mueren, y la muerte de nuestras células nos conduce a la nuestra propia.
Pero el sistema respiratorio no actúa por si solo en todo el proceso respiratorio. Éste es ayudado en gran medida por el sistema circulatorio, que es quien se encarga de transportar el oxigeno hasta las células y recoger el anhídrido carbónico de las mismas.



Vías respiratorias



Las vías respiratorias son el camino por el que el aire entra en los pulmones. Son las siguientes :
Fosas nasales:


Son dos cavidades situadas en el interior de la nariz y separadas por el hueso vómer. En su interior se encuentra una mucosa denominada pituitaria. Posee glándulas que segregan mucus que atrapan partículas nocivas para el organismo que floten en el aire. La función de las fosas nasales es humidificar, filtrar y calentar el aire inspirado de modo que llegue perfectamente acondicionado a los pulmones. La filtración es llevada a cabo por los pelos existentes en la entrada de la nariz, ya que atrapan las partículas más voluminosas,y por otro fenómeno llamado atrapamiento por turbulencia, por el cual las partículas son retenidas en las diferentes angosturas existentes en las vías nasales. Además el aire es calentado en las fosas nasales hasta una temperatura de 20-25ºC para evitar que llegue excesivamente frio a los pulmones.



Faringe:



Cuando el aire es filtrado, calentado y humedecido, pasa a la faringe, una cavidad común al aparato respiratorio y al aparato digestivo que consigue separar el camino de los alimentos, del camino del aire mediante la epiglotis, que funciona como una válvula.
En los lados y en el techo, estas las adenoides y las amígdalas que se encargan de destruir las partículas que lleguen y que estén atrapadas en el mucus.



Laringe:



Tiene estructura cartilaginosa y comunica con la faringe por la parte superior y con la traquea por la inferior. Es el órgano en el que se produce la voz, mediante unos repliegues musculares hallados en su interior, llamados cuerdas vocales, y gracias también a que la boca, la lengua, las fosas nasales, la laringe y la traquea, actúan como caja de resonancia. La laringe está sujeta por medio de ligamentos al hueso hioides, situado en la base de la lengua.



Traquea, bronquios y bronquíolos:



Parte del aparato respiratorio que se encuentra entre la laringe y los bronquios, y se sitúa por delante del esófago. La tráquea está formada por numerosos hemianillos cartilaginosos, abiertos por su parte dorsal, que es adyacente al esófago. Estos anillos se distribuyen unos sobre otros y están unidos por tejido muscular y fibroso. En el ser humano, la tráquea tiene una longitud de 10 cm y 2,5 cm de diámetro. Su superficie interna está revestida por una membrana mucosa ciliada, cuyos cilios vibran al unísono para que la mucosa que atrapa las partículas nocivas, sea arrastrada hasta la laringe donde será expulsada al exterior o tragada. La tráquea es muy susceptible a infecciones respiratorias.





Los bronquios resultan de la división en 2 partes de la traquea, por lo que tienen su misma estructura. A su vez los bronquios se ramifican en los pulmones dando origen a los bronquíolos cada uno de los cuales continúa ramificándose hasta que se llega al alvéolo pulmonar, cuya pared es una finísima membrana que separa el aire de la sangre y constituye el punto de unión entre el aparato respiratorio y el aparato circulatorio.



Los pulmones:




Son los órganos fundamentales de la respiración, situados en la cavidad torácica ( costillas, esternón y columna vertebral ) a ambos lados del corazón en cuya base se encuentra la membrana muscular conocida como diafragma; lo separa el espacio denominado mediastina. El pulmón derecho se divide en tres lóbulos y el izquierdo en dos ( debido a la presencia del corazón ) cada lóbulo presenta una serie de secciones denominadas segmentos. Están rodeados por una membrana llamada pleura, con dos capas separadas por el espacio pleural:
Pleura visceral : interna y unida a los pulmones.
Pleura parietal: por fuera de la pleura visceral y en contacto con la cavidad torácica.
En ciertos casos el espacio pleural puede llenarse de líquido o aire provocando un trastorno denominado pleuresía.
La Respiración




Alveolización:



Los bronquios se dividen en ramificaciones, formando los bronquíolos de paredes más finas, y sustituye el epitelio ciliado por una capa de células planas.
Lasramificaciones finales de los bronquíolos concluyen en los alvéolos pulmonares. La Alveolización proporciona al pulmón una superficie de unos 100 m2 para el intercambio de gases.




El intercambio gaseoso:




Se produce entre el aire inspirado y la sangre. Tiene lugar a través de la mucosa de los alvéolos y la pared de los capilares que forma una red alrededor, aproximadamente en una fracción de segundo.




El oxígeno se extiende en el torrente sanguíneo donde es captado por la hemoglobina de los hematíes que se transforma en oxihemoglobina. A la vez se libera anhídrido carbónico, recogido por la sangre en los tejidos y disuelto en el plasma. Así en un estado natural de reposo se ponen en contacto al mínimo 5 litros de sangre con 4 litros de aire.


Ventilación pulmonar:


La ventilación consiste en la renovación constante del aire que está en contacto con las paredes alveolares.
La respiración se realiza a partir de dos movimientos, continuos y alternados, la Inspiración y la Expiración.
La Inspiración permite la entrada de aire a los pulmones, en este movimiento se contraen los músculos intercostales y el diafragma.
De esta manera, se aumenta la dimensión de la caja toráxica: los pulmones se inflan al recibir el aire que entra.


La Expiración permite la salida del aire de los pulmones. Es un movimiento pasivo, por el cual,Los músculos intercostales y el diafragma se relajan, disminuyendo las dimensiones de la caja toráxica. Los pulmones, por su naturaleza elástica, se contraen y expulsan el aire al exterior. Si la espiración es forzada, expulsamos mayor cantidad de aire porque actuan los abdominales y los musculos intercostales.
Los movimientos respiratorios de inspiración y expiración tienen por efecto renovar constantemente el aire de las cavidades respiratorias. Por cada inspiración se introducen 500 ml de aire.


Volúmenes respiratorios :

Volumen basal ( Vb ) : es de unos 500 ml e indica la cantidad de aire que, en condiciones de reposo, se intercambia durante una respiración normal.
Volumen inspiratorio de reserva ( Vir ): es de unos 3 litros, que resultan del aumento adicional, ademas de los 500 ml, cuando se realiza una inspiración forzada.
Volumen espiatorio de reserva ( Ver ): es aproximadamente de 1litro, que es la cantidad adicional que podemos expulsar durante una espiración forzada.
Volumen residual ( Vr ): supone aprox. 1.5 litros de aire que permanecen en los conductos respiratorios y no se pueden expulsar, aunque realicemos un espiración forzada.
Formas inusuales de respiración

La tos:

Es una espiración brusca y ruidosa del aire contenido en los pulmones, producida por la irritación de las vías respiratorias o por la acción refleja de algún trastorno nervioso, gástrico.
El estornudo:
e produce como respuesta a la irritación de la mucosa nasal, ya sea por partículas de polvo , olores intensos y penetrantes o fragmentos de epitelio dañado en una infección vírica como la gripe.

El hipo:

Contracción involuntaria del diafragma que se acompaña de una contracción de la laringe y de un cierre de la glotis que evitan la inspiración de aire. El hipo leve, por lo general, se inicia de forma espontánea, dura sólo unos cuantos minutos y se debe a pequeñas alteraciones del estómago, desapareciendo por sí solo sin tratamiento. El CO2 en concentración del 10 por ciento suprime el hipo.

El bostezo:

Está relacionado con el sueño y el aburrimiento, aunque podría ser una forma de aumentar el suministro de sangre al cerebro, ya que aumenta momentáneamente el ritmo cardiaco.

El suspiro:

Es lo contrario al bostezo, pero expulsamos el aire en lugar de absorberlo.

La risa:

La risa comprende una sucesión de espiraciones débiles e intermitentes.
Control de los movimientos respiratorios:
La producción rítmica de los movimientos de la respiración es controlada por el bulbo raquídeo (parte del encéfalo), el cual mantiene el ciclo inspiración-expiración. Este centro nervioso envía impulsos a los músculos intercostales y al diafragma, los que se contraen y causan la expansión de la caja torácica. Cuando los pulmones se llenan con el aire inspirado, los nervios correspondientes generan impulsos, que provocan la inhibición del centro respiratorio, el bulbo deja de mandar mensajes al diafragma y músculos intercostales, los cuales se relajan y dan lugar a la expiración.

Enfermedades

Los pulmones, así como la mayoría de las partes del cuerpo, son sensibles al medio ambiente. Los agentes bacterianos o virales que se encuentran en el aire o que otras personas transmiten afectan el normal funcionamiento de estos órganos vitales.
El centro respiratorio es muy sensible a la contaminación de dióxido de carbono en la sangre. Si la concentración aumenta, el centro respiratorio acrecienta el envío de impulsos nerviosos a los músculos de la respiración y, de inmediato, las inspiraciones se hacen más frecuentes y profundas.
Neumonía: es una infección aguda de los espacios alveolares, causada por bacterias patógenas y virus. Si la infección se circunscribe a los alvéolos contiguos a los bronquios, se denomina Bronconeumonía.
Tuberculosis pulmonar: llamada antíguamente Tisis, es causada por el bacilo de Koch, y se propaga a través del aire, por la tos y el estornudo.
Asma Bronquial: es la contracción involuntaria de los músculos de las paredes bronquiales. Se presenta con gran cantidad de secreción de mucus. Además provoca una insuficiente función del alvéolo.

Enfisema:
es una enfermedad que afecta, especialmente, a las personas fumadoras y a las que viven en ciudades con el aire muy contaminado. Una persona que sufre de efisema, no puede exhalar cantidades normales de aire, porque ha perdido la elasticidad de sus pulmones.
Cáncer pulmonar: es causado, probablemente, por factores ambientales, siendo el consumo de cigarrillos un factor primordial.
SISTEMA ENDOCRINO

El sistema endocrino está formado por todos aquellos órganos que se encargan de producir y secretar sustancias, denominadas hormonas, hacia al torrente sanguíneo; con la finalidad de actuar como mensajeros, de forma que se regulen las actividades de diferentes partes del organismo.
Los órganos principales del sistema endocrino son: el hipotálamo, la hipófisis, la glándula tiroides, las paratiroides, los islotes del páncreas, las glándulas suprarrenales, las gónadas (testículos y ovarios) y la placenta que actúa durante el embarazo como una glándula de este grupo además de cumplir con sus funciones específicas.
El hipotálamo es la glándula que, a través de hormonas, estimula a la hipófisis para que secrete hormonas y pueda estimular otras glándulas o inhibirlas. Esta glándula es conocida como "glándula principal" ya que como se explica anteriormente, regula el funcionamiento de varias glándulas endocrinas.
La hipófisis controla su secreción a través de un mecanismo llamado "retroalimentación" en donde los valores en la sangre de otras hormonas indican a esta glándula si debe aumentar o disminuir su producción.

Hay otras glándulas que su producción de hormonas no dependen de la hipófisis sino que responden de forma directa o indirecta a las concentraciones de sustancias en la sangre, como son: los islotes del páncreas, las glándulas paratiroides y la secreción de la médula suprarrenal que responde a la estimulación del sistema nervioso parasimpático.
A continuación se especificará cada una de las funciones de las glándulas que componen este sistema y la acción de cada hormona segregadas al flujo sanguíneo.



Anatomía


El sistema endocrino está formado por las siguientes glándulas endocrinas (que segregan sus productos a la sangre):

Hipotálamo
Hipófisis
Glándulas hipófiso-dependientes
Glándula tiroides
Ovarios y testículos
Glándulas hipófiso-independientes
Glándula paratiroides
Páncreas
Glándulas Endocrinas
Glándulas Exocrinas
Glándulas suprarrenales


Timo (presente hasta la pubertad)

El sistema endocrino está íntimamente ligado al sistema nervioso, de tal manera que la hipófisis recibe estímulos del hipotálamo y la médula suprarrenal del sistema nervioso simpático. A este sistema se le llama sistema neuroendocrino. Incluso el sistema inmunitario también está relacionado a este sistema neuroendocrino a través de múltiples mensajeros químicos.
Mediante el proceso químico al que sean sometidas las glándulas endocrinas pueden efectuarse cambios biológicos mediante diversas acciones químicas.

Hormonas

Las hormonas son segregadas por ciertas células especializadas localizadas en glándulas de secreción interna o glándulas endocrinas, o también por células epiteliales e intersticiales. a transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media) y hacen su efecto en determinados órganos o tejidos a mediana distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autocrina) o sobre células contiguas (acción paracrina) interviniendo en la comunicación celular. Existen hormonas naturales y hormonas sintéticas. Unas y otras se emplean como medicamentos en ciertos trastornos, por lo general, aunque no únicamente, cuando es necesario compensar su falta o aumentar sus niveles si son menores de lo normal.Las hormonas se pueden clasificar además en locales y generales. Las hormonas locales ejercen su acción en un sitio local específico mientras que las generales realizan su acción en todo el cuerpo humano. Entre las locales se hallan la acetilcolina, la colecistinina y la secretina mientras que dentro de las generales se encuentran la adrenalina y la noradrenalina.

Características

Actúan sobre el metabolismo.
Se liberan al espacio extra celular.
Viajan a través de la sangre.
Afectan tejidos que pueden encontrarse lejos del punto de origen de la hormona.
Su efecto es directamente proporcional a su concentración.
Independientemente de su concentración, requieren de adecuada funcionalidad del receptor, para ejercer su efecto.
Regulan el funcionamiento del cuerpo.

Efectos

Estimulante: promueve actividad en un tejido. Ej: prolactina. Ej: guesina.
Inhibitorio: disminuye actividad en un tejido. Ej: somatostatina.
Antagonista: cuando un par de hormonas tienen efectos opuestos entre sí. Ej: insulina y glucagón.
Sinergista: cuando dos hormonas en conjunto tienen un efecto más potente que cuando se encuentran separadas. Ej: hGH y T3/T4
Trópica: esta es una hormona que altera el metabolismo de otro tejido endocrino. Ej: gonadotropina sirven de mensajeros químicos.

Clasificación

Las glándulas endocrinas producen y secretan varios tipos químicos de hormonas:
Esteroideas: solubles en lípidos, se difunden fácilmente hacia dentro de la célula diana. Se une a un receptor dentro de la célula y viaja hacia algún gen del ADN nuclear al que estimula su transcripción. En el plasma, el 95% de estas hormonas viajan acopladas a transportadores protéicos plasmáticos.
No esteroide: derivadas de aminoácidos. Se adhieren a un receptor en la membrana, en la parte externa de la célula. El receptor tiene en su parte interna de la célula un sitio activo que inicia una cascada de reacciones que inducen cambios en la célula. La hormona actúa como un primer mensajero y los bioquímicos producidos, que inducen los cambios en la célula, son los segundos mensajeros.
Aminas: aminoácidos modificados. Ej: adrenalina, noradrenalina.
Péptidos: cadenas cortas de aminoácidos, por ej: OT, ADH. Son hidrosolubles con la capacidad de circular libremente en el plasma sanguíneo (por lo que son rápidamente degradadas: vida media <15>


SISTEMA OSEÒ

El esqueleto humano es el conjunto total y organizado de piezas óseas que proporciona al cuerpo humano una firme estructura multifuncional (locomoción, protección, contención, sustento, etc.). A excepción del hueso hioides —que se halla separado del esqueleto—, todos los huesos están articulados entre sí formando un continuum, soportados por estructuras conectivas complementarias como ligamentos, tendones, músculos y cartílagos.
El esqueleto de un ser humano adulto tiene, aproximadamente, 206 huesos, sin contar las piezas dentarias, los huesos suturales o wormianos (supernumerarios del cráneo) y los huesos sesamoideos. El esqueleto humano participa con el 12 por ciento del peso total del cuerpo, así una persona que pesa 75 kilogramos, 9 kilogramos de ellos son por su esqueleto.
El conjunto organizado de huesos —u órganos esqueléticos— conforma el sistema esquelético, el cual concurre con otros sistemas orgánicos (sistema nervioso, sistema articular y sistema muscular) para formar el aparato locomotor.
El esqueleto óseo es una estructura propia de los vertebrados. En Biología, un esqueleto es toda estructura rígida o semirrígida que da sostén y proporciona la morfología básica del cuerpo, así, algunos cartílagos faciales (nasal, auricular, etc.) debieran ser considerados también formando parte del esqueleto.

FUNCIONES

El sistema esquelético tiene varias funciones, entre ellas las más destacadas son:
Sostén mecánico del cuerpo y de sus partes blandas: funcionando como armazón que mantiene la morfología corporal;
Mantenimiento postural: permite posturas como la bipedestación;
Soporte dinámico: colabora para la marcha, locomoción y movimientos corporales: funcionando como palancas y puntos de anclaje para los músculos;
Contención y protección de las vísceras, ante cualquier presión o golpe del exterior, como, por ejemplo, las costillas al albergar los pulmones, órganos delicados que precisan de un espacio para ensancharse,
Almacén metabólico: funcionando como moderador (tampón o amortiguador) de la concentración e intercambio de sales de calcio y fosfatos.
Transmisión de vibraciones.
Además, en la corteza esponjosa de algunos huesos, se localiza la médula ósea, la cual lleva a cabo la hematopoyesis o formación y diferenciación de las células sanguíneas.

NÙMERO HUESOS

El número de huesos en personas adultas va desde los 206 hasta los 208 aproximadamente, pero debemos recordar que esta cifra no se cumple en los niños pequeños y menos aún en los recién nacidos. Esto se debe a que los recién nacidos nacen con algunos huesos separados para
facilitar su salida desde el canal de parto, por ejemplo tenemos los huesos del cráneo, si palpamos la cabeza de un recién nacido encontramos partes blandas llamadas fontanelas: en ellas los huesos están unidos por tejido cartilaginoso que luego se osificará para formar el cráneo de un adulto.

También el maxilar se encuentra dividido en dos, el maxilar superior y el inferior, cuando se suture el maxilar inferior dará lugar a un tipo de sutura llamada sínfisis. Así que el número de huesos depende de la edad de la persona a la cual se refiera, pero como promedio para un adulto es alrededor de 206 huesos.

DIVISIÒN DE LOS HUESOS

Vista frontal y vista trasera del esqueleto humano.

Uno de los esquemas para el estudio del esqueleto humano, lo divide en dos partes:
El esqueleto axial, que son los huesos situados a la línea media o eje, y ellos soportan el peso del cuerpo como la columna vertebral. Se encargan principalmente de proteger los órganos internos.
El esqueleto apendicular, que son el resto de los huesos pertenecientes a las partes anexas a la línea media (apéndices); concretamente, los pares de extremidades y sus respectivas cinturas, y ellos son los que realizan mayores movimientos como la muñeca...
Esqueleto axial: 80 huesos aproximadamente
Huesos de la columna vertebral (raquis): 26 huesos aproximadamente
Cervicales (cuello): 7
Torácicos: 12
Lumbares: 5
Sacro: 1 (formado por la fusión de 5 vértebras)
Cóccix: 1 (formado por la fusión de 4 vértebras)
Huesos de la cabeza: 29 huesos
Cráneo: 8
Cara: 14
Oído: 8
Hioides: 1 (hueso no articulado con el esqueleto)
Huesos del Tórax (25)
Costillas: 24 (12 pares)
Esternón: 1
Esqueleto apendicular: 126 huesos
Huesos de la cintura escapular: 4 huesos
Huesos de las extremidades superiores: 30 x 2
Brazo: 1 x 2
Antebrazo: 2 x 2
Mano:
Carpo (muñeca): 8 x 2
Metacarpo (mano): 5 x 2
Falanges (dedos): 14 x 2
En los miembros superiores y pectorales: 64
Brazos y manos: 60
Hombros: 2 clavículas y dos escápulas.
En los miembros inferiores y pélvicos: 62
Piernas y pies: 60
Pelvis: 2 huesos pélvicos (formados por la fusión del ilion, isquion y pubis)



TEJIDO CONECTIVO (SISTEMA CARTILAGINOSO)

Estos tejidos, en conjunto, sustentan y mantienen las distintas partes del cuerpo, y comprenden el tejido conectivo elástico y fibroso, el tejido adiposo (tejido graso), el cartílago y el hueso. A diferencia del epitelio, las células de estos tejidos están muy separadas unas de otras, con gran cantidad de sustancia intercelular entre ellas. Las células del tejido fibroso sé interrelacionan unas con otras por una red irregular de filamentos en capa fina que también forma el esqueleto de vasos sanguíneos, nervios y otros órganos. El tejido adiposo tiene una función similar, y sus células suponen además un almacén de grasas. El tejido elástico que forma parte de los ligamentos, de la tráquea y de las paredes arteriales se dilata y se contrae con cada latido del pulso. Durante el desarrollo embrionario los fibroblastos segregan colágeno para el desarrollo del tejido fibroso y se modifican más tarde para segregar una proteína diferente llamada condrina para la formación del cartílago; ciertos cartílagos se calcifican para formar huesos. La sangre y la linfa suelen considerarse tejidos conectivos

EXOESQUELETO

El caparazón de sílice o de calcio que segregan ciertos protozoos, conocidos como foraminíferos, constituye una forma de exoesqueleto. Las esponjas poseen un exoesqueleto constituido por espongina, que es una sustancia elástica y dura. Los celentéreos segregan una gran variedad de sustancias exoesqueléticas, que varían desde la cubierta elástica de las medusas hasta el material pétreo que depositan los corales. El caparazón de la mayor parte de los moluscos están compuestos por carbonato de calcio y por una sustancia orgánica básica, denominada conchiolina. Entre los insectos, cada una de las tres principales divisiones del cuerpo, cabeza, tórax y abdomen, están incluidas en un armazón de placas córneas. Las placas que constituyen cada división primaria están separadas de las placas de la siguiente división por un tejido elástico que permite la flexibilidad de los movimientos que realiza el insecto. Los apéndices están recubiertos por vainas que son proyecciones del exoesqueleto; un tejido elástico, similar al que se encuentra entre las placas, une los distintos segmentos de los apéndices entre sí y con el cuerpo del animal.

ENDOESQUELETO

Los vertebrados poseen un grupo de estructuras más o menos rígidas, constituidas por cartílago o por hueso, o por una combinación de estos dos tipos de tejido conectivo. La más primitiva de estas estructuras es la notocorda, que es una espina dorsal de tejido cartilaginoso que poseen los peces. Los animales más desarrollados, desde el punto de vista evolutivo, poseen un esqueleto axial, formado por el cráneo, la columna vertebral y las costillas; y un esqueleto apendicular formado por las cinturas pélvica y pectoral, y por los apéndices.






SISTEMA CIRCULATORIO





El aparato circulatorio está formado por el corazón y los vasos sanguíneos (arterias, venas y capilares). Por este sistema circula la sangre, que sale del corazón y se distribuye por las arterias, para después regresar de nuevo al corazón a través de las venas. Durante este trayecto, reparte el oxígeno y los nutrientes, y recoge las sustancias de desecho.
El corazón es el motor que hace funcionar tu cuerpo ¿Sabías que cada vez que late expulsa la sangre de su interior y la empuja para que circule por todos los rincones de tu organismo? Tu corazón funciona como una bomba que envía sangre hacia los vasos sanguíneos.
Los vasos sanguíneos son tubos huecos y flexibles de diferentes tamaños que se distribuyen por todo tu organismo, como si fueran una red de autopistas, carreteras y caminos. Pueden ser de tres tipos: arterias, venas o capilares.
Las arterias son los vasos sanguíneos que llevan la sangre que sale de tu corazón hacia todas las partes de tu cuerpo. Las venas son los vasos sanguíneos que llevan la sangre desde todas las partes de tu cuerpo de nuevo hacia el corazón. Los capilares son los vasos sanguíneos más pequeños que existen. En ellos la sangre cede el oxígeno y los nutrientes a las células, y recoge los productos de desecho.

PARTES DEL APARATO CIRCULATORIO


La sangre es el fluido que circula por todo el organismo a través del sistema circulatorio, formado por el corazón y los vasos sanguíneos. De hecho, la sangre describe dos circuitos complementarios. En la circulación pulmonar o circulación menor la sangre va del corazón a los pulmones, donde se oxigena o se carga con oxigeno y descarga el dioxido de carbono. En la circulación general o mayor, la sangre da la vuelta a todo el cuerpo antes de retornar al corazón.



Los Vasos sanguíneos (arterias, capilares y venas) son conductos musculares elásticos que distribuyen y recogen la sangre de todos los rincones del cuerpo.

EL CORAZÒN





El Corazón es un musculo hueco, del tamaño del puño (relativamente), encerrado en el centro del pecho. Como una bomba, impulsa la sangre por todo el organismo. realiza su trabajo en fases sucesivas. Primero se llenan las cámaras superiores o aurículas, luego se contraen, se abren las válvulas y la sangre entra en las cavidades inferiores o ventrículos. Cuando están llenos, los ventrículos se contraen e impulsan la sangre hacia las arterias. El corazón late unas setenta veces por minuto y bombea todos los días unos 10.000 litros de sangre.
La sangre es un tejido liquido, compuesto por agua, sustancias disueltas y células sanguíneas. Los glóbulos rojos o hematies se encargan de la distribución del oxigeno; los glóbulos blancos efectúan trabajos de limpieza (fagocitos) y defensa (linfocitos), mientras que las plaquetas intervienen en la coagulación de la sangre. Una gota de sangre contiene unos 5 millones de glóbulos rojos, de 5.000 a 10.000 glóbulos blancos y alrededor de 250.000 plaquetas.
El aparato circulatorio sirve para llevar los alimentos y el oxigeno a las células, y para recoger los desechos que se han de eliminar después por los riñones, pulmones, etc. De toda esta labor se encarga la sangre, que está circulando constantemente.


La Sangre es un liquido rojo, viscoso de sabor salado y olor especial. En ella se distinguen las siguientes partes : el plasma, los glóbulos rojos, los glóbulos blancos y las plaquetas.


El plasma sanguíneo es la parte liquida, es salado de color amarillento y en él flotan los demás componentes de la sangre, también lleva los alimentos y las sustancias de desecho recogidas de las células. El plasma cuando se coagula la sangre, origina el suero sanguíneo


Los Glóbulos Rojos o Hematies tienen forma de discos y son tan pequeños que en cada milímetro cúbico hay cuatro a cinco millones, miden unas siete micras de diámetro, no tienen núcleo por eso se consideran células muertas, tiene un pigmento rojizo llamado hemoglobina que les sirve para transportar el oxigeno desde los pulmones a las células.


Los Glóbulos Blancos o Leucocitos Son mayores pero menos numerosos (unos siete mil por milímetro cúbico), son células vivas que se trasladan, se salen de los capilares y se dedican a destruir los microbios y las células muertas que encuentran por el organismo. También producen antitoxinas que neutralizan los venenos de los microorganismos que producen las enfermedades.
Las Plaquetas Son células muy pequeñas, sirven para taponar las heridas y evitar hemorragias.
Partes Del Aparato Circulatorio Consta de :Un órgano central, el corazón y un sistema de tubos o vasos, las arterias, los capilares y las venas
.


Corazón



Es un órgano hueco y musculoso del tamaño de un puño, rodeado por el Pericardio. Situado entre los pulmones, dividido en cuatro cavidades : dos Aurículas y dos Ventrículos. Entre la Aurícula y el Ventrículo derecho hay una válvula llamada tricúspide, entre Aurícula y Ventrículo izquierdos está la válvula mitral. Las gruesas paredes del corazón forman el Miocardio.
Las Arterias Son vasos gruesos y elásticos que nacen en los Ventrículos aportan sangre a los órganos del cuerpo por ellas circula la sangre a presión debido a la elasticidad de las paredes.Del corazón salen dos Arterias :Arteria Pulmonar que sale del Ventrículo derecho y lleva la sangre a los pulmones.Arteria Aorta sale del Ventrículo izquierdo y se ramifica, de esta ultima arteria salen otras principales entre las que se encuentran:
Las caròtidas: Aportan sangre oxigenada a la cabeza.Subclavias: Aportan sangre oxigenada a los brazos.Hepática: Aporta sangre oxigenada al hígado.Esplènica: Aporta sangre oxigenada al bazo.Mesentèricas: Aportan sangre oxigenada al intestino.Renales: Aportan sangre oxigenada a los riñones.Ilíacas: Aportan sangre oxigenada a las piernas.



Los Capilares


Son vasos sumamente delgados en que se dividen las arterias y que penetran por todos los órganos del cuerpo, al unirse de nuevo forman las venas.
Las VenasSon vasos de paredes delgadas y poco elásticas que recogen la sangre y la devuelven al corazón, desembocan en las Aurículas.En la Aurícula derecha desembocan :La Cava superior formada por las yugulares que vienen de la cabeza y las subclavias (venas) que proceden de los miembros superiores.La Cava inferior a la que van las Ilíacas que vienen de las piernas, las renales de los riñones, y la suprahèpatica del hígado.La Coronaria que rodea el corazón.En la Aurícula izquierda desemboca las cuatro venas pulmonares que traen sangre desde los pulmones y que curiosamente es sangre arterial.


Funcionamiento Del Corazón


El corazón tiene dos movimientos : Uno de contracción llamado Sístole y otro de dilatación llamado Diástole. Pero la Sístole y la Diástole no se realizan a la vez en todo el corazón, se distinguen tres tiempos :Sístole Auricular : se contraen las Aurículas y la sangre pasa a los ventrículos que estaban vacíos.Sístole Ventricular : los ventriculos se contraen y la sangre que no puede volver a las aurículas por haberse cerrado las válvulas bicúspide y tricúspide, sale por las arterias pulmonar y aorta. Estas también tienen sus válvulas llamadas válvulas sigmoideas, que evitan el reflujo de la sangre.Diástole general : Las Aurículas y los Ventrículos se dilatan y la sangre entran de nuevo a las aurículas.Los golpes que se producen en la contracción de los Ventrículos originan los latidos, que en el hombre oscilan entre 70 y 80 latidos por minuto.


El Sistema Linfático


La linfa es un liquido incoloro formado por plasma sanguíneo y por glóbulos blancos, en realidad es la parte de la sangre que se escapa o sobra de los capilares sanguíneos al ser estos porosos.
Las venas linfáticas tienen forma de rosario por las muchas válvulas que llevan, también tienen unos abultamientos llamados ganglios que se notan sobre todo en las axilas, ingle, cuello etc. En ellos se originan los glóbulos blancos



martes, 25 de agosto de 2009

ECOSISTEMA DE SELVA HUMEDA TROPICAL

CLIMA
climas cálidos y húmedos, con variaciones térmicas de menos de 5 °C y lluvias durante todo el año.
FAUNA

Toda la fauna de la selva tropical húmeda sudamericana está presente en la Selva Amazónica. Existen en ella innumerables especies de plantas todavía sin clasificar, miles de especies de aves, innumerables anfibios y millones de insectos.
Desde los insectos hasta los grandes
mamíferos como el jaguar, el puma, la danta y los venados.

Reptilescomo tortugas, caimanes, babillas y serpientes, como la famosa anaconda, también lo habitan.

Hay aves (entre las que se destacan el guacamayo, el tucán, el águila arpía, etc.) y peces de todas las especies, plumajes y escamas, también en sus aguas vive el Delfín Rosa o rosado. En las lagunas a lo largo del Río Amazonas florece la planta Victoria amazonica, cuyas hojas circulares alcanzan más de un metro de diámetro.

Es tan amplio su aporte en especies de peces y plantas acuáticas que enumerarlas ocupa muchísimo lugar.
Para los aficionados al
acuarismo, se trata de la fuente que provee la mayor cantidad de especies piscícolas que hoy en día pueblan los comercios y acuarios del planeta. Un 20% de las especies mundiales de aves y plantas se halla en el bosque amazónico, cada año desaparecen más de 2000 especies.
La
Amazonía Peruana es una de las regiones de mayor riqueza biológica del mundo, pues la presencia de diferentes pisos altitudinales que posee en su unión con la Cordillera de los Andes, origina gran cantidad de zonas aisladas y, por lo tanto, un alto índice de endemismo.


UBICACIÓN
La selva amazónica es la selva tropical más extensa del mundo. Se considera que su extensión llega a los 6.000.000 de km² repartidos entre ocho paísessudamericanos: Brasil y Perú que poseen la mayor extensión de la amazonia seguidos por Bolivia,Colombia , Ecuador, Guyana, Venezuela y la Guayana Francesa que forma parte de la región ultraperiférica de la Unión Europea (UE).





TOPOGRAFÍA

caracterizan por la elevada pluviosidad, por encima de entre 1700 y 2000 mm anuales según las definiciones, y siempre por encima de 100 mm mensuales a lo largo de todo el año. Generalmente, el suelo es pobre debido a que la lluvia arrastra losnutrientes solubles. Las temperaturas oscilan entre 27 y 30 °C. La humedad media del suelo alcanza el 80%.
Las selvas umbrófilas albergan dos tercios de todas las especies de plantas y animales del mundo. De aquí se han obtenido muchos medicamentos naturales. Y se ha estimado que aún quedan por descubrir y clasificar cientos de millones de nuevas especies de plantas, insectos y microorganismos. Se han contado hasta varios centenares de especies de árboles por hectárea, frente a un máximo de una decena en los biomas templados. Abundan las especies, géneros y familias endémicas.
Estas selvas reciben a veces el nombre de pulmones del planeta, aunque científicamente se ha demostrado que su producción neta de oxígeno es muy pequeña o nula; consumen tanto como producen.1
A pesar de la exuberancia de la flora en las selvas umbrófilas, la calidad del suelo suele ser pobre, sobre todo en sustratos antiguos. La rápida descomposición bacteriana impide la acumulación dehumus. La concentración de óxidos de hierro y aluminio da al suelo un brillante color rojizo y a veces produce yacimientos explotables, por ejemplo de bauxita). En sustratos más jóvenes, especialmente si son de origen volcánico, los suelos tropicales pueden ser bastante fértiles; también son fértiles los de las selvas que se inundan periódicamente, gracias a los sedimentos aluviales que reciben.
Las plantas dominantes son árboles planifolios siempreverdes, que forman un dosel sobre el suelo. Suelen ser árboles grandes, de crecimiento lento. A veces, por encima del dosel, se alzan árboles más altos, llamados emergentes. La parte superior del dosel alberga comúnmente una rica flora de epifitas, como orquídeas, bromelias, musgos y líquenes, que crecen sobre las ramas de los árboles. Elsotobosque de la selva suele ser escaso debido a la ausencia de luz solar, y consiste en arbustos,hierbas, helechos, pequeños árboles y grandes plantas trepadoras leñosas. Hombres y animales pueden circular por el suelo de la selva con relativa facilidad. Cuando la selva es caducifolia o semi-caducifolia, o el dosel se ha visto alterado por alguna razón, el suelo es colonizado rápidamente por una densa y enmarañada vegetación de plantas trepadoras, arbustos y arbolitos llamada jungla